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ABSTRACT

Context. Some of the small-scale solar magnetic flux can be attributed to a small-scale dynamo (SSD) operating in the near-surface
convection. The SSD fields have consequences for solar granular convection, basal flux, as well as chromospheric heating. A similar
SSD mechanism is expected to be active in the near-surface convection of other cool main-sequence stars, but this has never been
investigated.
Aims. We aim to investigate changes in stratification and convection due to inclusion of SSD fields for F3V, G2V, K0V and M0V
spectral types in the near-surface convection.
Methods. 3D magnetohydrodynamic (MHD) models of the four stellar boxes, covering the subsurface convection zone up to the lower
photosphere in a small cartesian box, are studied using the MURaM radiative-MHD simulation code. The SSD runs are compared
against reference hydrodynamic runs.
Results. An SSD is found to efficiently produce magnetic field with energies ranging between 5% to 80% of the plasma kinetic energy
at different depths. This ratio tends to be larger for larger Teff . The relative change in density and gas pressure stratification for the
deeper convective layers due to SSD magnetic fields is negligible, except for the F-star. For the F-star, there is a substantial reduction
in convective velocities due to Lorentz force feedback from magnetic fields, which, in turn, reduces the turbulent pressure.
Conclusions. SSD in near-surface convection for cool main-sequence stars introduces small but significant changes in thermodynamic
stratification (especially for the F-star) due to reduction in convective velocities.
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1. Introduction

The interpretation of data from stellar observations requires a
stellar model to compare against. Traditionally, these models
have been 1D global models (Carbon & Gingerich 1969) that
use formulations of mixing-length theory (MLT) (Böhm-Vitense
1958). Later models accounted for line-blanketing effects and
used an opacity distribution function (ODF) approach to cal-
culate opacities (Strom & Kurucz 1966). Among others, the
MARCS code (Gustafsson et al. 1975, 2008), the ATLAS code
(Kurucz 1979; Castelli & Kurucz 2003) and the PHOENIX code
(Allard & Hauschildt 1995; Hauschildt et al. 1999) have en-
abled the calculation of synthetic stellar spectra with a detailed
accounting for the relevant physics. These models enabled, for
example, the accurate determination of abundances, stellar evo-
lution tracks, and even for constraining the chemical evolution
of galaxies (Edvardsson et al. 1993).

However, convection is a 3D process. A phenomenological
1D approach is insufficient to characterize properties of granu-
lation and plasma turbulence. Radiative aspects of granulation,
in particular, are not fully captured by an MLT-like approach.
1D models also require free parameters, like the mixing length
parameter αMLT and turbulent velocities for line broadening cal-
culations. Hence, 3D stellar atmosphere models become impor-
? e-mail: bhatia@mps.mpg.de

tant for a realistic interpretation of stellar characteristics from
observations. The first 3D simulations of solar convection were
pioneered by Nordlund (1982); Stein & Nordlund (1998); Nord-
lund & Stein (1990). These simulations are realistic in the sense
that they are directly comparable to solar observations: they re-
produce granulation pattern and associated spectral line widths
and asymmetries quite well (Asplund et al. 2000).

Early stellar models (Nordlund & Dravins 1990) showed the
limitations of MLT-based models in accurately reproducing the
near-surface temperature gradient, which affects radiative prop-
erties in the lower photospheres. Subsequently, various models
have been constructed over a grid of effective temperature, sur-
face gravity and metallicity. Currently, the most comprehensive
3D grids (Magic et al. 2013; Ludwig et al. 2009) cover a wide
range of stellar type on the HR-diagram, but they are purely hy-
drodynamic.

However, stellar convection is not a purely hydrodynamic
process. Most cool stars are expected to have magnetic fields.
Hence, a complete description of their photospheres should also
take into account the effects of such fields. The best studied star
in this context is the Sun. There is a rich variety of solar mag-
netic field-related phenomena ranging from sunspots and active
regions to network fields, forming plages and faculae all the way
down to small-scale mixed polarity turbulent magnetic field fill-
ing the rest of the solar surface. State-of-the-art solar simulations
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reproduce all of these features, from sunspots (Rempel et al.
2009) and plages (Vögler et al. 2005; Yadav et al. 2021) to the
quiet-sun magnetism (Rempel 2014).

The quiet-sun small-scale field, that is, the field associated
with regions of the sun not showing any activity, is partly at-
tributable to a small-scale dynamo (SSD) operating in the con-
vection zone (Vögler & Schüssler 2007; Rempel 2014; Pietar-
ila Graham et al. 2010). This field is believed to have a signif-
icant magnitude of around ∼ 130 G, based on Hanle depolar-
ization (Trujillo Bueno et al. 2004). Additional evidence that a
fair fraction of the small-scale field is a result of an SSD comes
from the fact that internetwork magnetic flux does not follow
the solar cycle (Buehler et al. 2013; Lites et al. 2014). In realis-
tic radiative-MHD simulations, the effect of quiet-sun magnetic
fields (self consistently generated via an SSD mechanism) has
previously been shown to be important, e.g. to reproduce the
correct solar intensity contrast (Danilovic et al. 2010) and ac-
count for inferred photospheric magnetic field strength based on
Hanle-effect diagnostics (Shchukina & Trujillo Bueno 2011). In
addition, one often obtains a rough equipartition between kinetic
and magnetic energy in SSD simulations (Hotta et al. 2015; Hau-
gen et al. 2004; Schekochihin et al. 2004), which implies a sub-
stantial reduction in plasma velocities since most of the energy
in the magnetic fields is obtained from the plasma motions. The
importance of magnetic fields generated from an SSD in other
stellar types and its effect on the intensity characteristics, how-
ever, remains yet to be explored. Hence, it becomes imperative
to investigate the effect of quiet-star small-scale magnetic fields
on these quantities.

This paper is a part of a project aimed at constructing a grid
of magneto-convective stellar atmospheres, ranging in tempera-
ture (3500 < T < 7000 K), gravity (4.3 < log10 g < 4.8 in cgs
units) and metallicity (in this paper, only solar metallicities are
considered). We investigate four stellar cases: F3V, G2V, K0V
and M0V, and study the relative change in stratification, convec-
tion and intensity from purely hydrodynamic setups.

In §2, we outline the simulation code and the setup. Then,
we present the results of the simulations in §3, followed by in-
terpretation of the results in §4. Lastly, we summarize the results
and corresponding discussion in §5.

2. Methods

2.1. Simulation Code

The code we use throughout this work is MURaM (Vögler et al.
2005; Rempel 2014, 2017). It is a 3D radiative-MHD code that
solves the conservative MHD equations for compressible, par-
tially ionized plasma. It uses a multi-group radiative transfer
scheme with short characteristics (Nordlund 1982). The equa-
tions for mass (ρ - density), momentum (v - velocity, p - pres-
sure) and energy (εh - enthalpy density) conservation are solved,
along with the induction equation (B - magnetic field)

∂tρ = − ∇ · (ρv) (1)
∂t(ρv) = − ∇ · (ρvv) − ∇p + ρg + FSR + FL (2)

∂t(εh + ρv2/2) = − ∇ · (v(εh + p + ρv2/2))+
v · (g + FL + FSR) + Qrad + Qres (3)

∂t B =∇ × (v × B) (4)

Here F refers to forces and Q refers to source terms. The
subscript SR refers to semi-relativistic "Boris correction"-related

terms (Boris 1970; Gombosi et al. 2002) (negligible for our se-
tups) and L refers to Lorentz force. The two Q terms in the en-
ergy equation account for the radiative heating/cooling and re-
sistive heating (since the hydrodynamic energy is conserved, in-
stead of the total energy). For details, we refer the reader to Rem-
pel (2014, 2017). In this work, the grey approximation is used for
solving the radiative transfer equations, where the frequency de-
pendence of the opacity is replaced by an average value. This is
an acceptable approximation for this work since we are mainly
interested in the structure below and just above the surface (Vö-
gler et al. 2004). Finally, the FreeEOS equation of state (Irwin
2012) with solar abundances (Asplund et al. 2009) is used to
close the set of equations.

The effective temperature (Teff) (related to the radiative out-
put), the surface gravitational acceleration (g) (related to the
hydrostatic balance) and the metallicity (Z) uniquely specify
the spectral class of a star. The MURaM code uses a constant
gravitational acceleration g, the gas pressure at bottom bound-
ary (pbot), and the inflow entropy at the bottom boundary (sbot)
as free parameters. The pbot and sbot parameters determine the
height of the τ = 1 surface and the Teff .

2.2. Setup and Parameters

We consider four stellar cases: F3V, G2V, K0V, and M0V. These
cases were chosen to cover a broad range of Teff for stellar types
with convective envelopes. All boxes have the same number of
gridpoints (512 × 512 in the horizontal direction and 500 in the
vertical direction). The scaling for the horizontal and the vertical
geometric extent is done such that the number of granules in each
box is roughly the same and the number of pressure scale heights
below the photosphere is also similar (∼ 7.5). For the G-star, this
corresponds to 4 Mm below the surface and a horizontal extent
of 9 Mm × 9 Mm.

The boundaries are periodic in the horizontal x, y, direction.
The top boundary (ztop) is open to outflows and closed to in-
flows, with vertical magnetic fields. The bottom boundary (zbot)
is symmetric1 for mass flux (ρv), entropy downflows and mag-
netic fields. Note that the magnetic field boundary condition also
allows horizontal field to be advected across the bottom bound-
ary. This ’mimics’ the presence of magnetic field deeper in the
convection zone, as considered previously based on equiparti-
tion arguments (Rempel 2014; Hotta et al. 2015). The magnetic
field BC may not necessarily preserve the ∇ · B = 0 constraint.
However, the hyperbolic divergence cleaning approach (Dedner
et al. 2002) employed in MURaM takes care of the ∇ · B errors
reasonably well ((∇ · B)rms/(||B||/∆z) ∼ O(10−3), see Fig. C.1).

For each star, we performed simulations with magnetic fields
(SSD), and purely hydrodynamic (HD) simulations. Purely hy-
drodynamic simulations were initialized with density and inter-
nal energy profiles generated using the 1D stellar code MESA
(Paxton et al. 2019) for the F-, K- and M-star and using the stan-
dard solar model from Christensen-Dalsgaard et al. (1996) for
the G-star. These were then run for several hours in stellar time
till convection became relaxed and there were no transients vis-
ible in velocity and pressure vertical slices. Then the simulation
box was seeded with net zero-flux magnetic field with a negligi-
bly small field strength (10−5 G) and run till photospheric mag-

1 This refers to the way the derivative is handled across the ghost cells.
Symmetric boundary implies the same value in the ghost cell (qg) next
to the boundary domain cell (qd), such that the derivative across the
boundary is zero (qg = qd), and anti-symmetric implies a value with the
opposite sign (qg = −qd)
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Table 1. Parameters for the simulation setup

Type z↓* (ztot) x0, y0 ∆x, y ∆z log10 g (Teff)HD
* (Teff)SSD

* 〈||B||〉τ=1
* 〈|Bz|〉τ=1

* 〈||B||〉〈τ〉=1
*

(Mm) (Mm) (km) (km) (cm/s2) (K) (K) (G) (G) (G)
F3V 11.11 (13.00) 23 45 26 4.301 6817±7 6807±8 188±15 93±8 132±10
G2V 4.09 (5.00) 9 17.5 10 4.438 5834±9 5840±9 127±12 66±6 113±10
K0V 2.05 (2.31) 4.62 8.2 4.62 4.609 4668±5 4671±5 103±6 50±3 103±6
M0V 0.90 (1.14) 2.043 3.99 2.28 4.826 3825±1 3827±2 106±6 54±4 107±6

Notes. (*) These quantities are determined after running the simulations. Note that the change in Teff will not influence the total radiative output on
long timescales (> 105 yr) corresponding to the Kelvin-Helmholtz timescale. See Spruit (1982) for details.

netic field strength reached saturation. The results presented in
the subsequent sections are averaged over a few hours of stellar
time (after saturation), and over a number of snapshots, for all
the eight cases (see Table 2 for further details for each setup).

Table 1 describes the detailed setup for all the simulations:
for all four stellar types, it gives the height of the τ = 1 sur-
face above the bottom boundary (and the total vertical extent),
the horizontal extent, the horizontal resolution, the vertical reso-
lution, the log constant surface gravity, the effective temperature
of the SSD and HD cases, the average magnetic field magnitude
at the τ = 1 iso-surface2 〈||B||〉τ=1, the average unsigned vertical
field at the τ = 1 iso-surface 〈|Bz|〉τ=1, and the average magnetic
field magnitude at the 〈τ〉 = 1 horizontal slice 〈||B||〉〈τ〉=1 of the
SSD cases. The effective temperature is calculated by averaging
the angle-averaged bolometric luminosity over time.

3. Results

Table 2. Color-coding for the plots, along with number of snapshots
considered and total time in hours for each stellar box

Star SSD HD
Color N t (h) Color N t (h)

F3V Blue 264 12.4 Light Blue 124 14.8
G2V Black 178 7.7 Gray 117 15.0
K0V Green 125 10.6 Lime 193 16.8
M0V Red 263 5.4 Light Red 197 10.1

Notes. All HD plots are dashed lines.

All the magnetic simulations exhibit dynamo action and de-
velop magnetic fields with energy within an order of magnitude
of the kinetic energy through most of the simulation box. The
change in the partition of energy influences the internal structure
as well as convective velocities. Snapshots of the bolometric in-
tensity and vertical velocity at the τ = 1 surface for the SSD
and the HD setups (along with the vertical magnetic field for the
SSD cases) are shown in Fig. 1. The SSD cases show distinct in-
tergranular bright points which correspond with strong magnetic
field concentrations. In the following subsections, we examine
the horizontally averaged structure of the magnetic field and its
effects on the stratification as well as convection for these stellar
types. The analysis of the magnetic fields in the lower photo-
sphere and their effect on the bolometric intensity and vertical
velocity will be covered in the next paper in this series.

All 1D plots are averages over a number of snapshots span-
ning a few hours of stellar time (see Table 2 for exact numbers).
2 This is the surface corresponding to where τ = 1 in each vertical
column of the simulation cube, and this is usually somewhat corrugated
because downflows are cooler than upflows and opacity is extremely
sensitive to temperature in the relevant ranges.

The error bars are standard error (standard deviation normalized
by the square root of the number of snapshots σ/

√
N) of the

average 1D structure, the assumption being that over this time
span, the snapshots are statistically independent.

All quantities are plotted as a function of number of pres-
sure scale heights relative to the height where 〈τ〉 = 1, nH =
log(pgas/pgas(〈τ〉=1)) (with this definition, positive values corre-
spond to the interior). Since the non-magnetic bottom boundary
conditions are identical (pbot and sbot are the same) for HD and
SSD runs, the deviations are calculated geometrically and plot-
ted against the corresponding HD pressure scale axis.

This extent in terms of pressure scale heights ranges from
7.5 (bottom) to -5 (near top) for all the simulations. Since the
focus of this paper is on the near surface convection zone, we
exclude from our analysis the portion of the box corresponding
to nH < −1. We also exclude the region corresponding to nH > 6,
to possible numerical bottom boundary effects.

3.1. Magnetic field structure

As mentioned in the introduction to this section, the dynamo ac-
tion results in a significant amount of magnetic field, with the
overall magnitude roughly similar for all the cases, and with a
somewhat decreasing trend with Teff near the surface (Fig. 2, top
panel and last column of Table 1). The relation of the magnetic
energy to kinetic energy is discussed in §3.3.

The bottom panel of Fig. 2 shows the ratio Bh/Bz, which
gives an indication of the 3D structure of the magnetic fields.
For a fully isotropic distribution of magnetic field, one would
expect B2

x ≈ B2
y ≈ B2

z . This implies that the ratio of the horizontal
r.m.s. component of the magnetic field fluctuations Bh,rms to the
vertical component Bz,rms should be ∼

√
2. For G-, K- and M-

stars, this ratio is slightly less than
√

2 in the middle of the box
(2 < nH < 5), indicating near-isotropy, whereas for the F-star, it
is significantly lower (∼ 1).

Near the τ = 1 surface, Bh,rms/Bz,rms for all the stars is lower
because of intensification of vertical magnetic fields in the inter-
granular lanes (e.g. Spruit (1979)).

3.2. Changes in Stratification

Fig. 3 shows the plots of deviation from the mean HD stratifi-
cation. The deviations from the HD simulations are presented
as the relative percent change in the horizontally averaged 1D
structure. For any quantity of interest q (e.g, density, tempera-
ture etc.), these deviations are calculated as (qSSD − qHD)/qHD.
This means that a positive value for the deviation corresponds to
a higher value for the SSD case relative to the HD case.

All simulations show slight (≤ 2%) changes in thermo-
dynamic stratification relative to the corresponding HD sim-
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Fig. 1. Emergent intensity and surface vertical velocities in different stellar types for models with and without magnetic field. From top to bottom:
Snapshot of the bolometric intensity and vz at τ = 1 for the HD case (row 1 and 2), bolometric intensity and vz at τ = 1 for the SSD case (row 3
and 4) and the corresponding vertical magnetic field at τ = 1 (row 5, from left to right) for spectral types F, G, K and M, respectively. The green
circles indicate the bright points and corresponding magnetic field concentrations.

ulations, with the magnitude of deviations below the surface
roughly increasing from coolest to hottest stellar type. Below
3 pressure scale heights, the G, K and M simulations show neg-
ligible (≤ 0.1%) deviations in thermodynamic quantities.

Closer to the surface, the F-star simulation shows up to 1.5%
reduction in density and up to 1% reduction in gas pressure (Fig.
3, top and bottom panel, blue line). This trend is opposite to that
seen for other cases, all of which show a slight (< 1%) enhance-
ment in density and pressure. These results are analyzed in §4.1.
For context, a 1.5% deviation in temperature for an F-star would
correspond to a temperature change of ∼100 K.

3.3. Distribution of energies

In Fig. 4, the panel a) shows the ratio of magnetic to kinetic
energy. For all cases, this ratio is within an order of magni-
tude throughout the box. This ratio for the F-star is significantly
higher compared to the other stars. In addition, the ratio for M-

star has a minima deeper down in the box than for other stars.
As before, the general trend shows a decrease in this ratio with
decreasing Teff .

Fig. 4b shows the relative change in kinetic energy between
the SSD and the HD setups. All stars show a marked decrease
in kinetic energy in the SSD case. As with the top panel, F-star
shows a significantly stronger reduction in kinetic energy com-
pared to the other cases. The M-star as well shows a stronger
reduction in KE near the surface compared to the G and K-stars.

Fig. 4c shows the ratio of kinetic to internal energy. For the
F-star, this ratio is within an order of magnitude near the surface,
whereas for the other stars, it is less than 1%.

Fig. 4d shows the ratio of the magnetic to the internal energy.
There is a clear trend in this ratio with stellar type, with it being
lowest for M-star (∼ 5 × 10−5 near bottom, to ∼ 10−4 near sur-
face) and highest for F-star (∼ 10−3 near bottom, to ∼ 10−2 near
surface).

Article number, page 4 of 10



Tanayveer S. Bhatia et al.: Small-scale Dynamo in Cool Stars

Fig. 2. Top: Horizontally averaged magnetic field magnitude. Bottom:
The ratio of the horizontal r.m.s field strength to the vertical r.m.s field
strength. The horizontal axis is the number of pressure scale heights
log10(pgas/pgas(τ=1)), calculated for the HD cases, below the surface (dot-
ted vertical black line). The shaded regions correspond to 1-σ standard
error (e = σ/

√
N, N is the number of snapshots) computed over time

averaging of snapshots.

3.4. Changes in Velocities

All SSD cases exhibit a decrease in vertical velocities v2
z as well

as the ratio of horizontal to vertical r.m.s. velocities vh,rms/vz,rms
(Fig. 5), relative to the corresponding HD cases. The reduction in
v2

z follows similar trend for all the four stars, with a decrease of
4-8% near the surface, going up to 20% near the bottom bound-
ary. For G-, K- and M-star, the decrease in vh,rms/vz,rms is similar
(5% near the surface, going up to 12% near the bottom) but is
more pronounced for the F-star case (10% near the surface, go-
ing up to 20% near the bottom boundary). This implies a change
in the horizontal extent of sub-surface granulation, which fol-
lows Nordlund et al. (2009), who showed using simple mass con-
servation that the horizontal extent of granules is proportional to
H(vh/vz), where H is the local density scale height.

The ratio vh,rms/vz,rms gives an idea of the 3D velocity struc-
ture. Close to the τ = 1 surface, the ratio increases suddenly.
This increase corresponds to where convective flows turn over,
as the atmosphere becomes convectively stable and the flows
above that point are mainly due to convective overshoot. The
exact pressure scale depth where this turning over takes place
depends of the effective temperature: For the F- and G-star, this
turnover takes place within half a pressure scale height of the
τ = 1 surface whereas, for the M-star, it takes place well below
the τ = 1 surface (around nH = 3). This is also probably why the
minima of the ME/KE ratio in Fig. 4 for M-star is significantly
below the surface compared to the G and K-star, as density (and,
consequently, KE) is lower above the height where most of the
overturning takes place.

The changes in v2
z as well as the vh,rms/vz,rms with depth seem

to follow a regular trend, and is consistent with the results ob-
tained previously in whole-convection zone simulations with a
small-scale dynamo set up (Hotta et al. 2015).

Fig. 3. Deviations in ρ, T and pgas for F (blue), G (black), K (green) and
M-star (red) cases. The vertical axis gives the geometric deviations as
a percentage relative to the hydrodynamic case. The horizontal axis is
the number of pressure scale heights log10(pgas/pgas(τ=1)), calculated for
the HD cases, below the surface (dotted vertical black line). The shaded
regions correspond to 1-σ standard error (e = σ/

√
N, N is the number

of snapshots) of the mean solid curve.

4. Discussion

4.1. Turbulent pressure

We first discuss the deviations of the pressure and density in the
SSD models from a purely HD model. The pressure and den-
sity deviations (Fig. 3) are very small (∼ 0.1%) for the G-, K-
and M-star in the convection zone (and not significantly larger
near the surface for the K- and M-star). The deviations are more
prominent for the F-star (∼ 1%). This discrepancy can be under-
stood by considering the contribution of turbulent pressure in the
overall hydrostatic balance.

Turbulent pressure becomes important for hydrostatic bal-
ance when kinetic energy is within an order of magnitude or so
of the internal energy. This is indeed the case for our F-star mod-
els. This implies that turbulent pressure (which is largely due to
plasma motions) can be a significant fraction of the gas pressure
pgas. Quantitatively, this can be seen from a crude MLT calcula-
tion of the Mach number (see appendix A for derivation)

M ≈ 0.138
( T
103 K

)5/6 (
ρ

10−7 g/cm3

)−1/3

. (5)

Using the above equation, we calculate the F-star photospheric
Mach number to be about 0.75 (see Table 3), slightly lower than
simulation value in Beeck et al. (2013) who found it to be 0.9.
For the other stars, the velocity is decidedly subsonic.

Now, the hydrostatic balance is expressed in terms of the bal-
ance between force due to pressure gradient p′ = dp/dz and

Article number, page 5 of 10



A&A proofs: manuscript no. main

Fig. 4. a) Ratio of magnetic to kinetic energy, b) percent change in ki-
netic energy, c) ratio of kinetic to internal energy, and d) ratio of mag-
netic to internal energy (bottom) for F-, G-, K- and M-stars.

Table 3. Mach numbers computed using MLT

Simulation Tsurf (103 K) ρsurf (10−7 g/cm3) M
F3V 6.19 0.59 0.75
G2V 6.17 2.39 0.47
K0V 4.94 6.67 0.28
M0V 3.96 21.3 0.16

Notes. ρsurf and Tsurf are obtained from HD simulation data

gravity ρg, acting in the vertical (viz. radial) direction. These two
terms should be approximately equal in magnitude. If just pgas is
considered, this balance does not hold very well, with deviations
increasing strongly with Teff (Fig. 6, top panel).

The turbulent pressure consists of terms from the total stress
tensor. From Reynold stresses, the ρviv j term and from Maxwell
stresses, the ((B2/2)δi j − BiB j)/4π term is obtained. As men-
tioned in the introduction, the presence of SSD magnetic fields
implies a reduction in kinetic energy, where energy is redis-
tributed between the plasma motions and magnetic fields via
Lorentz force feedback. In Fig. 4, the ratio of magnetic to kinetic

Fig. 5. Relative decrease in convective velocities v2
z (top), relative de-

crease in ratio of horizontal to vertical r.m.s velocities vh,rms/vz,rms (mid-
dle), and the actual vh,rms/vz,rms ratio (bottom).

energy (top panel) corresponds remarkably well with the reduc-
tion in kinetic energy relative to the HD case (middle panel), im-
plying most of the energy in the magnetic fields is drawn from
the kinetic energy reservoir. The magnetic energy is within an
order of magnitude of the kinetic energy for subsurface plasma.
This is consistent with the results on equipartition of energy in
several SSD simulations (Hotta et al. 2015; Haugen et al. 2004;
Schekochihin et al. 2004).

This order of magnitude equipartition results in a reduction
of plasma velocities, and, consequently, the magnitude of the
Reynolds stress term. The contribution from the Maxwell stress,
on the other hand, can be either negative or positive, depending
on whether the effects of magnetic tension dominate over that of
magnetic pressure in the vertical direction. More quantitatively
(see appendix B for a derivation), the total turbulent pressure can
be expressed as

pturb = ρv2
z +

B2
h − B2

z

8π
. (6)

With this included in the calculation of the pressure gradient
term, hydrostatic balance is satisfied, as can be seen in middle
panel of Fig. 6 (note the difference in the extent of y-axis for the
top and middle panels). In the bottom panel of the same figure,
the reduction in pturb/pgas is most prominent for the F-star. Since
the changes in v2

z are similar (Fig. 5, top panel) for all stars, there
must be a reduction in density for the F-star to compensate for
the significant change in pturb.

Based on the expression for pturb, we introduce an effective
turbulent velocity v =

√
pturb/ρ
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Fig. 6. Hydrostatic force balance with gas pressure pgas (top) and total
pressure ptot (middle) gradient term and ρg term, normalized by 〈ρg〉
as 〈dp/dz + ρg〉/〈ρg〉, and ratio of turbulent pressure to gas pressure
(bottom). All quantities are plotted for SSD (solid) and HD (dashed)
cases. Note that the extent of y-axis is larger by more than an order of
magnitude for force balance with pgas compared to force balance with
ptot

With this, it becomes possible to relate changes in density
stratification to changes in total pressure gradient. A straightfor-
ward consideration of the density scale height Hρ (see appendix
B) yields

Hρ = RT/(µg) + v2/g (7)

This tells us that where B2
h < B2

z and (ρv2
z )SSD < (ρv2

z )HD, the
scale height of the SSD model is smaller than for the HD model,
(Hρ)SSD < (Hρ)HD. This is valid if assuming that the change in T
and µ is relatively small. From the proportionality between den-
sity scale height and v2

z (Eq. 7), the decrease in vertical velocity
is associated with a decrease in the local density scale height.
This can be inferred from Fig. 6, bottom panel, where the ratio
pturb/pgas (∝ v2/(RT/µ)) is noticeably lower for F-star near the
surface.

These conditions are satisfied relatively well for the F-star
case. A decrease in Hρ implies a steepening of the density strati-
fication for the SSD case relative to the HD case. This is exactly
the case in the top panel of Fig. 3: the reduction in density goes
from a ∼0% to ∼ 1.5% near the surface. Below the surface, it is
reasonably good to assume a perfect gas equation of state, with
pgas ∝ ρT . Assuming changes in T are small compared to ρ and
pgas, this, in turn, implies that the changes in pgas follows a sim-
ilar trend as changes in ρ. Near the surface, this picture breaks
down since the mode of energy transfer changes from convective
to radiative and this simplified analysis is no longer valid.

The effect of turbulent pressure on stratification and convec-
tion has previously been considered for stellar model envelopes
from an MLT perspective (Henyey et al. 1965) as well as for 3D
HD simulations (Ludwig & Kučinskas 2012; Jørgensen & Weiss
2019), but, to the best of our knowledge, the effect of magnetic
fields from a SSD have not been considered before.

4.2. Changes in velocity structure

As mentioned in §3.4, the ratio vh,rms/vz,rms (Fig. 5, bottom
panel), gives an idea of where convection overturns relative to
pressure scale height for a given effective temperature. The trend
in overturning for different spectral types fits the usual picture of
"hidden" granulation below the τ = 1 surface for cooler, denser
stars like M and K vs. the "naked" granulation above the τ = 1
surface of hotter, more rarefied stars like G and F, as discussed
in Nordlund & Dravins (1990).

This ratio is close to 1 for the HD G-, K- and M-stars (dashed
lines). For the HD F-star, however, it is significantly higher
(dashed light blue line), indicating a higher degree of isotropy
in the velocity structure3. This implies relatively higher hori-
zontal velocities for the HD F-star. The nearly-isotropic velocity
profile for the HD F-star can be attributed to the kinetic energy
being a non-negligible fraction of the internal energy. We spec-
ulate that these stronger horizontal velocities contribute to the
stronger magnetic fields in the vertical direction for the F-star
(as inferred from the lower Bh,rms/Bz,rms for the F-star in Fig. 2,
bottom panel).

In the case of SSD (solid lines), all stars follow a similar
trend for vh,rms/vz,rms, with the ratio being ≤ 1 up to the point
where convection overturns. The change in velocity field struc-
ture in the presence of SSD fields is a hard problem that depends
on the SSD saturation mechanism. Note that the Bh,rms/Bz,rms ra-
tio is lower for F-star compared to other cases. Perhaps the rel-
atively stronger fields in the vertical direction restrict horizontal
flows more for F-star and lead to a larger change in vh,rms/vz,rms.
An understanding of this behavior requires a more detailed anal-
ysis which is beyond the scope of this paper.

5. Conclusions

We have investigated the magnetic field self-consistently gen-
erated by an SSD acting in the near-surface layers of main-
sequence stars of spectral types F3V, G2V, K0V and M0V. The
SSD mechanism operates in all cases to amplify magnetic fields
from a seed field of negligible strength and zero net flux. The
magnetic fields from the SSD have an energy density that is a
non-negligible fraction of the kinetic energy density. These fields
act back on the plasma to reduce the convective velocities, which
in turn reduces the turbulent pressure. This becomes substantial
for the F-star as it is hot enough to have kinetic and internal en-
ergy within an order of magnitude near the surface, which gives
magnetic fields stronger than those in G-, K- and M-stars, es-
pecially in the vertical direction. The equation for hydrostatic
balance for total pressure and the reduction of convective veloc-
ities implies a reduction in the density scale height itself. This is
significant enough for the F-star to result in reduced density and
gas pressure throughout the box. This effect tends to get smaller
towards later spectral types.

This paper only covers the near-surface convection zone. Of
particular interest to observational studies would be the mag-
3 Fully isotropic flow requires v2

x = v2
y = v2

z . Hence, this would imply
vh,rms/vz,rms =

√
2
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netic field structure in the lower photosphere and changes in the
intensity characteristics. In addition, the change in scale height
and the changes in vh/vz imply changes in granulation scale. All
these points are investigated in a subsequent paper.
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Appendix A: Mach number derivation

We derive the expression for Mach number used in Eq. (5) from
§4.1. Consider the hydrostatic pressure balance equation, the ex-
pression for pressure-scale height (Hp), the expression for sound
speed (cs) and the ideal gas equation of state:

p′ = −gρ (A.1)
Hp = −p/p′ (A.2)

c2
s = γp/ρ (A.3)
p = ρ(R/µ)T (A.4)

Here, Hp is the pressure scale height, p′ = dp/dz, µ is the mean
molar mass, and 1/µ = (1+E)(X +Y/4+Z/2), where E is ioniza-
tion fraction and X,Y,Z are the H, He and metal abundances. In
the Böhm-Vitense MLT (Böhm-Vitense 1958), convective flux
and velocities are expressed as,

Fconv = αcpρvT (∇ − ∇a)/2 (A.5)

v2 = α2δgHp(∇ − ∇a)/8 (A.6)

Here, α is the mixing length parameter (usually taken to be
between 1.5 to 2), δ = 1 − (∂ ln µ/∂ ln T )p (abundance gradient
with temperature for an ideal gas), cp = (∂U/∂T )p + pδ/(ρT )
(heat capacity at constant pressure) and ∇ = d ln T/d ln p, with
the subscript a referring to ‘adiabatic’. See chapter 6 of Stix
(2004) for details.

Near the surface, as most energy is carried by radiation, Fconv ≈

σT 4. We take the ratio of Eq. A.5 and Eq. A.6 to eliminate ∇ −
∇a and use σT 4 instead of Fconv. Taking Mach number M =

v/cs and cs =
√
γRT/µ and eliminating Hp and p using Eqs.

A.1,A.2,A.4,

M =

(
αδσµ1/2

4cpγ3/2R1/2

)1/3

T 5/6ρ−1/3 (A.7)

Using relevant values for the terms in the parentheses (all in cgs),
we get Eq. (5) in terms of T and ρ as above

α = 1.8 (average literature value)
δ = 1 (assume µ is constant)

σ = 5.67e-5 erg/cm2/s/K4 (Stefan-Boltzmann constant)
γ = 5/3 (monoatomic adiabatic index)
µ = 1.2 (solar surface abundance)
R = 8.314e7 erg/K/mol (universal gas constant)

cp = γR/(µ(γ − 1)) (isobaric specific heat capacity)

Note that this value of µ assumes E ∼ 0 near τ = 1. For an
M-star, this may not necessarily be the case. However, even if
E → 1, µ changes by a factor of 2 and, accordingly, M cahnges
by a factor of 21/2 ≈ 1.4 and the qualitative result still holds.

Appendix B: Turbulent pressure and pressure scale
height derivation

In §4.1, we use an expression for pturb in Eq. (6). This can be
derived as follows: consider the total (Reynolds and Maxwell)
stress tensor σi j for ideal MHD

σi j = ρ(viv j) +

(
p +

B2

8π

)
δi j −

BiB j

4π
(B.1)

Here i, j represent the x, y and z directions.
The pressure balance along the vertical (z) direction involves the
term 〈∇z · σiz〉z which is equal to ∂ptot/∂z. We can now compare
these two terms to get an expression for total pressure (ptot). As-
suming all the off-diagonal terms (i , j) are negligible (which is
akin to saying there is no cross-correlation between the vertical
and the horizontal velocity and magnetic field components), we
obtain the following:

〈ptot〉z =

〈
ρv2

z +

p +
B2

x + B2
y + B2

z

8π

 −
(
B2

z +��
�* 0

BzBx +��
�* 0

BzBy

)
4π

〉
z

(B.2)

〈ptot〉z = 〈ρv2
z 〉 + 〈p〉z +

〈B2
h − B2

z 〉z

8π
(B.3)

The next step is to consider how using ptot instead of p affects the
density scale height Hρ. In Eq. (A.1), we substitute expression
for ptot instead of p and use Eq. (A.4) to eliminate p. With this,
we obtain,

d
dz

(
ρ(RT/µ + v2)

)
= −ρg (B.4)

Note that we take v2 to be v2
z + (B2

h − B2
z )/(8πρ)

The above equation can be rearranged to get

dρ
ρ

= −
gdz

RT/µ + v2 −
d(RT/µ + v2)

RT/µ + v2 (B.5)

From this, one gets the expression for density scale height Hρ as

Hρ = RT/(µg) + v2/g (B.6)

The second term above includes the contribution from the tur-
bulent pressure. Since this term is almost always smaller for the
SSD case relative to the HD case (mainly because the convective
velocities are lower for SSD), the corresponding pressure scale
height for the SSD cases is also almost always smaller.

Appendix C: Diagnostics

For any MHD simulation, the computation and evolution of the
magnetic field must be divergence free. To ensure this, MURaM
uses a hyperbolic divB cleaning algorithm (Dedner et al. 2002).
Here we show the horizontally averaged divergence of magnetic
field across the box for all 4 SSD cases. Since the units for ∇ · B
are field/length, a proper comparison requires a normalization.
We do so with ||B||/∆z. As mentioned in §2.2, at best, the error
is O(10−3).
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Fig. C.1. div·B error for the four SSD cases F, G, K and M. The quantity
plotted is horizontally averaged (∇ · B)rms/(||B||/∆z).
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